Towards a denotational semantics for the ρ-calculus

Germain Faure
LORIA-Nancy

Alexandre Miquel
PPS-Paris 7
Menu of the next 30 minutes

- Presentation of the ρ-calculus (a fragment).
- Scott semantics.
- Discussions (weakness & new insights).
- On the horizon.
The ρ-calculus as a generalization of λ-calculus

“Main design concept: to make all the basic ingredients of rewriting explicit objects” (from IGPAL-01)
The ρ-calculus as a generalization of λ-calculus

- “Main design concept: to make all the basic ingredients of rewriting explicit objects” (from IGPAL-01)

- Uniform integration of rewriting and λ-calculus.
The ρ-calculus as a generalization of λ-calculus

- “Main design concept: to make all the basic ingredients of rewriting explicit objects” (from IGPAL-01)

- **Uniform** integration of rewriting and λ-calculus.

- Main ideas of the ρ-calculus:
The ρ-calculus as a generalization of λ-calculus

- “Main design concept: to make all the basic ingredients of rewriting explicit objects” (from IGPAL-01)

- **Uniform** integration of rewriting and λ-calculus.

- Main ideas of the ρ-calculus:
 - **Pattern abstractions:**

 $\lambda x . M \leadsto \lambda P . M$
The ρ-calculus as a generalization of λ-calculus

- “Main design concept: to make all the basic ingredients of rewriting explicit objects” (from IGPAL-01)

- Uniform integration of rewriting and λ-calculus.

- Main ideas of the ρ-calculus:
 - Pattern abstractions:

 $$\lambda xyz . zyx \leadsto \lambda \text{cons}(x, l) . x$$
The ρ-calculus as a generalization of λ-calculus

- “Main design concept: to make all the basic ingredients of rewriting explicit objects” (from IGPAL-01)

- **Uniform** integration of rewriting and λ-calculus.

- Main ideas of the ρ-calculus:
 - **Pattern abstractions:**
 \[
 \lambda xyz . zxy \leadsto \lambda cons(x, l) . x
 \]
 - **Matching constraints:**
 \[
 [cons(x, l) \ll \text{nil}]x
 \]
The \(\rho \)-calculus as a generalization of \(\lambda \)-calculus

- “Main design concept: to make all the basic ingredients of rewriting explicit objects” (from IGPAL-01)

- **Uniform** integration of rewriting and \(\lambda \)-calculus.

- Main ideas of the \(\rho \)-calculus:
 - **Pattern abstractions:**
 \[
 \lambda xyz . zxy \leadsto \lambda \text{cons}(x, l) . x
 \]
 - **Matching constraints:**
 \[
 \text{[cons}(x, l) \ll \text{nil}]x \quad \lambda x . [f(y) \ll x]y
 \]
The \(\rho\)-calculus as a generalization of \(\lambda\)-calculus

- “Main design concept: to make all the basic ingredients of rewriting explicit objects” (from IGPAL-01)

- Uniform integration of rewriting and \(\lambda\)-calculus.

- Main ideas of the \(\rho\)-calculus:
 - Pattern abstractions:
 \[
 \lambda xyz . zxy \leadsto \lambda \text{cons}(x, l) . x
 \]
 - Matching constraints:
 \[
 [\text{cons}(x, l) \ll \text{nil}]x \quad \lambda x . [f(y) \ll x]y
 \]
 - Structures:
 \[
 1 \quad 2
 \]
The ρ-calculus as a generalization of λ-calculus

- “Main design concept: to make all the basic ingredients of rewriting explicit objects” (from IGPAL-01)

- **Uniform** integration of rewriting and λ-calculus.

- Main ideas of the ρ-calculus:
 - **Pattern abstractions:**
 \[
 \lambda xyz . zxy \leadsto \lambda \text{cons}(x, l) . x
 \]
 - **Matching constraints:**
 \[
 [\text{cons}(x, l) \ll \text{nil}]x \quad \lambda x . [f(y) \ll x]y
 \]
 - **Structures:**
 \[Y \]
The ρ-calculus as a generalization of λ-calculus

- “Main design concept: to make all the basic ingredients of rewriting explicit objects” (from IGPAL-01)

- **Uniform** integration of rewriting and λ-calculus.

- Main ideas of the ρ-calculus:
 - **Pattern abstractions:**
 \[
 \lambda xyz \cdot zxy \leadsto \lambda \text{cons}(x, l) \cdot x
 \]
 - **Matching constraints:**
 \[
 [\text{cons}(x, l) \ll \text{nil}]x \quad \lambda x \cdot [f(y) \ll x]y
 \]
 - **Structures:**
 \[
 1; 2
 \]
Presentation of the ρ-calculus
Syntax of the ρ-calculus

Terms	$M, N ::= x$ (Variables)
	c (Constructors)
	$\lambda P . M$ (Abstraction)
	$M \cdot N$ (Functional application)
	$[P \ll N]M$ (Delayed matching constraints)
	$M; N$ (Structure)

| Patterns | $P ::= x$ (Variables) |
| | $cP_1 \ldots P_n$ (Constructors) |
Semantics of the ρ-calculus

\((\rho) \ (\lambda P . M) \cdot N \rightarrow [P \ll N] \cdot M \)

\((\sigma) \ [P \ll N] \cdot M \rightarrow \sigma M \)
if \(\sigma = P \ll N \)

\((\delta) \ (M_1; M_2) \cdot N \rightarrow M_1 \cdot N; M_2 \cdot N \)
Examples

\((\lambda \text{cons}(x, l) \cdot x) \cdot \text{cons}(1, \text{nil})\)
\[\quad \mapsto_\rho [\text{cons}(x, l) \ll \text{cons}(1, \text{nil})] x \]
\[\quad \mapsto_\sigma 1\]
Examples

$$(\lambda \text{cons}(x, l) . x) \cdot \text{cons}(1, \text{nil})$$

$\mapsto_\rho [\text{cons}(x, l) \ll \text{cons}(1, \text{nil})] x$

$\mapsto_\sigma 1$

$$(\lambda \text{cons}(x, l) . x) \cdot \text{nil}$$

$\mapsto_\rho [\text{cons}(x, l) \ll \text{nil}] x$$
Examples

\[(\lambda \text{cons}(x, l) \cdot x) \bullet \text{cons}(1, \text{nil})\]
\[\rightarrow_{\rho} [\text{cons}(x, l) \ll \text{cons}(1, \text{nil})] x\]
\[\rightarrow_{\sigma} 1\]

\[(\lambda \text{cons}(x, l) \cdot x) \bullet \text{nil}\]
\[\rightarrow_{\rho} [\text{cons}(x, l) \ll \text{nil}] x\]

\[(\lambda \circ \cdot \text{stop}; \lambda \circ \cdot \text{go}; \lambda \circ \cdot \text{go}; \lambda \circ \cdot \text{stop}) \bullet \circ\]
Examples

\[(\lambda \text{cons}(x, l) . x) \bullet \text{cons}(1, \text{nil})\]
\[\mapsto_\rho \ [\text{cons}(x, l) \ll \text{cons}(1, \text{nil})]x\]
\[\mapsto_\sigma 1\]

\[(\lambda \text{cons}(x, l) . x) \bullet \text{nil}\]
\[\mapsto_\rho \ [\text{cons}(x, l) \ll \text{nil}]x\]

\[(\lambda \circ . \text{stop}; \lambda \circ . \text{go}; \lambda \circ . \text{go}; \lambda \circ . \text{stop}) \bullet \circ\]
\[\mapsto_\delta \ (\lambda \circ . \text{stop}) \bullet \circ; (\lambda \circ . \text{go}) \bullet \circ; (\lambda \circ . \text{go}) \bullet \circ; (\lambda \circ . \text{stop}) \bullet \circ\]
\[\mapsto_\rho \ [\circ \ll \circ \text{stop}; [\circ \ll \circ \text{go}; [\circ \ll \circ \text{go}; [\circ \ll \circ \text{stop}\]
\[\mapsto_\sigma [\circ \ll \circ \text{stop}; [\circ \ll \circ \text{go}; \text{go}; \text{stop}\]
Examples

\((\lambda\ \text{cons}(x, l)\ .\ x)\cdot\text{cons}(1, \text{nil})\)
\[\mapsto_{\rho} [\text{cons}(x, l) \ll \text{cons}(1, \text{nil})] x\]
\[\mapsto_{\sigma} 1\]

\((\lambda\ \text{cons}(x, l)\ .\ x)\cdot\text{nil}\)
\[\mapsto_{\rho} [\text{cons}(x, l) \ll \text{nil}] x\]

\((\lambda\quad\text{stop}; \lambda\quad\text{go}; \lambda\quad\text{go}; \lambda\quad\text{stop})\cdot\text{stop}\)
\[\mapsto_{\delta} (\lambda\quad\text{stop})\cdot\text{stop}; (\lambda\quad\text{go})\cdot\text{go}; (\lambda\quad\text{go})\cdot\text{go}; (\lambda\quad\text{stop})\cdot\text{stop}\]
\[\mapsto_{\rho} [\text{stop} \ll \text{go}]\text{go}; [\text{go} \ll \text{go}]\text{go}; [\text{go} \ll \text{go}]\text{stop}\]
\[\mapsto_{\sigma + \text{GC}} \text{go}; \text{stop}\]
Examples

\[(\lambda \text{cons}(x, l) \cdot x) \cdot \text{cons}(1, \text{nil})\]
\[\mapsto_\rho [\text{cons}(x, l) \ll \text{cons}(1, \text{nil})]x\]
\[\mapsto_\sigma 1\]

\[(\lambda \text{cons}(x, l) \cdot x) \cdot \text{nil}\]
\[\mapsto_\rho [\text{cons}(x, l) \ll \text{nil}]x\]

\[(\lambda \bigcirc . \text{stop}; \lambda \bigcirc . \text{go}; \lambda \bigcirc . \text{go}; \lambda \bigcirc . \text{stop}) \cdot \bigcirc\]
\[\mapsto_\delta (\lambda \bigcirc . \text{stop}) \cdot \bigcirc; (\lambda \bigcirc . \text{go}) \cdot \bigcirc; (\lambda \bigcirc . \text{go}) \cdot \bigcirc; (\lambda \bigcirc . \text{stop}) \cdot \bigcirc\]
\[\mapsto_\rho [\bigcirc \ll \bigcirc] \text{stop}; [\bigcirc \ll \bigcirc] \text{go}; [\bigcirc \ll \bigcirc] \text{go}; [\bigcirc \ll \bigcirc] \text{stop}\]
\[\mapsto_\sigma + \text{GC} \quad \text{go; stop}\]

Theory on structures?
Why a denotational semantics

- **Operational semantics** focuses on computation
 Computation equivalence not always clear without the Church-Rosser property
 ⇒ Typical difficulty: *Prove that terms foo and bar are not convertible*
Why a denotational semantics

- **Operational semantics** focuses on computation
 Computation equivalence not always clear without the Church-Rosser property
 \[\Rightarrow\] Typical difficulty: *Prove that terms foo and bar are not convertible*

- **Denotational semantics** focuses on the input-output behaviour
 - Computations become transparent (convertible terms have the same denotation)
 - A clear notion of value \[\Rightarrow\] connect with mathematical intuitions
Why a denotational semantics

- **Operational semantics** focuses on computation
 Computation equivalence not always clear without the Church-Rosser property
 ⇒ Typical difficulty: *Prove that terms foo and bar are not convertible*

- **Denotational semantics** focuses on the input-output behaviour
 – Computations become transparent (convertible terms have the same denotation)
 – A clear notion of value ⇒ connect with mathematical intuitions

- **How it works:**
 – Find a suitable model D for the given notion of computation
 – Define the interpretation function $\llbracket \cdot \rrbracket : \text{Terms} \rightarrow D$
Why a denotational semantics

- **Operational semantics** focuses on computation
 Computation equivalence not always clear without the Church-Rosser property
 ⇒ Typical difficulty: *Prove that terms *foo* and *bar* are not convertible*

- **Denotational semantics** focuses on the input-output behaviour
 – Computations become transparent (convertible terms have the same denotation)
 – A clear notion of value ⇒ connect with mathematical intuitions

- **How it works:**
 – Find a suitable model D for the given notion of computation
 – Define the interpretation function $\llbracket \rrbracket : \text{Terms} \rightarrow D$
 – Prove the soundness property: $M_1 \overset{\text{comput.}}{=} M_2 \Rightarrow \llbracket M_1 \rrbracket = \llbracket M_2 \rrbracket$
Why a denotational semantics

- **Operational semantics** focuses on computation
 Computation equivalence not always clear without the Church-Rosser property
 ⇒ Typical difficulty: *Prove that terms* foo and bar *are not convertible*

- **Denotational semantics** focuses on the input-output behaviour
 – Computations become transparent (convertible terms have the same denotation)
 – A clear notion of value ⇒ connect with mathematical intuitions

- **How it works:**
 – Find a suitable model D for the given notion of computation
 – Define the interpretation function $\llbracket \cdot \rrbracket : \text{Terms} \rightarrow D$
 – Prove the soundness property: $M_1 \overset{\text{comput.}}{=} M_2$ ⇒ $\llbracket M_1 \rrbracket = \llbracket M_2 \rrbracket$

 – Syntactic corollaries (Typically: *terms* foo and bar *are not convertible*)
Scott domains

- A Scott domain is a poset \((D, \leq)\) satisfying particular axioms.
 Namely: CPO + bottom element + bounded completeness + algebraicity

- Work with continuous functions (induced by Scott topology on \(D\))
- Domain equations such as \(D \approx (D \to D)\) have non-trivial solutions
 \(\Rightarrow\) Useful to interpret \(\lambda\)-calculi
Scott domains

- A **Scott domain** is a poset \((D, \leq)\) satisfying particular axioms.
 - **Namely:** CPO + bottom element + bounded completeness + algebraicity
 - Work with **continuous functions** (induced by Scott topology on \(D\))
 - Domain equations such as \(D \approx (D \to D)\) have non-trivial solutions
 \(\Rightarrow\) Useful to interpret \(\lambda\)-calculi

- **Intuition:** Each point of \(D\) represents some amount of information
Scott domains

- A Scott domain is a poset \((D, \leq)\) satisfying particular axioms.

 Namely: CPO + bottom element + bounded completeness + algebraicity

- Work with continuous functions (induced by Scott topology on \(D\))
- Domain equations such as \(D \approx (D \rightarrow D)\) have non-trivial solutions

 \(\Rightarrow\) Useful to interpret \(\lambda\)-calculi

- **Intuition:** Each point of \(D\) represents some amount of information

 - Partiality: \(x \leq y \equiv x\) is less defined than \(y\)

 - In Comp. Sc.:
Scott domains

- A **Scott domain** is a poset \((D, \leq)\) satisfying particular axioms.
 Namely: CPO + bottom element + bounded completeness + algebraicity
 - Work with **continuous functions** (induced by Scott topology on \(D\))
 - Domain equations such as \(D \approx (D \to D)\) have non-trivial solutions
 \(\Rightarrow\) Useful to interpret \(\lambda\)-calculi

- **Intuition:** Each point of \(D\) represents some amount of information
 - Partiality: \(x \leq y \equiv x\) is less defined than \(y\)
 - In Comp. Sc.: Lack of (observable) information \(\equiv\) Non-termination
Scott domains

- A Scott domain is a poset \((D, \leq)\) satisfying particular axioms.

 Namely: CPO + bottom element + bounded completeness + algebraicity

- Work with **continuous functions** (induced by Scott topology on \(D\))
- Domain equations such as \(D \approx (D \to D)\) have non-trivial solutions

 \[\Rightarrow \text{ Useful to interpret } \lambda\text{-calculi} \]

- **Intuition:** Each point of \(D\) represents some amount of information

 - Partiality: \(x \leq y \equiv x\) is less defined than \(y\)
 - In Comp. Sc.: Lack of (observable) information \(\equiv\) Non-termination
 - Bottom el\(^t\): \(\bot \equiv (\lambda x . xx)(\lambda x . xx) \equiv 10 \text{ GOTO 10, etc.} \)
Scott domains

- A Scott domain is a poset (D, \leq) satisfying particular axioms.
 Namely: CPO + bottom element + bounded completeness + algebraicity

 - Work with continuous functions (induced by Scott topology on D)
 - Domain equations such as $D \approx (D \to D)$ have non-trivial solutions
 \Rightarrow Useful to interpret λ-calculi

- **Intuition:** Each point of D represents some amount of information
 - Partiality: $x \leq y \equiv x$ is less defined than y
 - In Comp. Sc.: Lack of (observable) information \equiv Non-termination
 - Bottom el$: \perp \equiv (\lambda x . xx)(\lambda x . xx) \equiv 10 \text{ GOTO } 10$, etc.
 - Monotonicity: Cannot extract information from non-termination (halting problem)
Scott domains

- A Scott domain is a poset \((D, \leq)\) satisfying particular axioms.

 Namely: CPO + bottom element + bounded completeness + algebraicity

- Work with continuous functions (induced by Scott topology on \(D\))
- Domain equations such as \(D \approx (D \to D)\) have non-trivial solutions
 \(\Rightarrow\) Useful to interpret \(\lambda\)-calculi

- Intuition: Each point of \(D\) represents some amount of information

 - Partiality: \(x \leq y \equiv x\) is less defined than \(y\)
 - In Comp. Sc.: Lack of (observable) information \(\equiv\) Non-termination
 - Bottom el\(^t\): \(\bot \equiv (\lambda x . xx)(\lambda x . xx) \equiv 10\) GOTO 10, etc.
 - Monotonicity: Cannot extract information from non-termination (halting problem)
 - Finiteness: A finite piece of output is produced by only a finite piece of input
Scott domains

- A Scott domain is a poset \((D, \leq)\) satisfying particular axioms.
 - **Namely:** CPO + bottom element + bounded completeness + algebraicity
 - Work with continuous functions (induced by Scott topology on \(D\))
 - Domain equations such as \(D \approx (D \to D)\) have non-trivial solutions
 \(\Rightarrow\) Useful to interpret \(\lambda\)-calculi

- **Intuition:** Each point of \(D\) represents some amount of information
 - Partiality: \(x \leq y \equiv x\) is less defined than \(y\)
 - In Comp. Sc.: Lack of (observable) information \(\equiv\) Non-termination
 - Bottom el\(\uparrow\): \(\bot \equiv (\lambda x.xx)(\lambda x.xx) \equiv 10\ \text{GOTO}\ 10,\ \text{etc.}\)
 - Monotonicity: Cannot extract information from non-termination (halting problem)
 - Finiteness: A finite piece of output is produced by only a finite piece of input
 - Continuity: \(\equiv\) Monotonicity + Finiteness [i.e. commutation with directed limits]
Rho-models

A ρ-model is a Scott-domain D equipped with:

Beta-rule Two (Scott-continuous) functions:

- $\text{lam} : (D \rightarrow D) \rightarrow D$
- $\text{app} : D \rightarrow (D \rightarrow D)$

s.t. $\text{app} \circ \text{lam} = \text{id}_{D \rightarrow D}$

and $\text{lam} \circ \text{app} \leq \text{id}_D$
Rho-models

A ρ-model is a Scott-domain D equipped with:

- **Beta-rule** Two (Scott-continuous) functions:
 \[
 \text{lam} : (D \to D) \to D \quad \text{app} : D \to (D \to D) \quad \text{s.t.} \quad \text{app} \circ \text{lam} = \text{id}_{D \to D} \quad \text{lam} \circ \text{app} \leq \text{id}_D
 \]

- **Pattern-matching** For each constructor c of arity n, two functions:
 \[
 c_* : D^n \to D \quad c^* : D \to \text{opt}(D^n) \quad \text{s.t.} \quad c^* \circ c_* = (\vec{w} \mapsto \text{some}(\vec{w}))
 \]
Rho-models

A \(\rho \)-model is a Scott-domain \(D \) equipped with:

- **Beta-rule** Two (Scott-continuous) functions:

 \[
 \text{lam} : (D \rightarrow D) \rightarrow D \\
 \text{app} : D \rightarrow (D \rightarrow D)
 \]

 such that

 \[
 \text{app} \circ \text{lam} = \text{id}_{D \rightarrow D} \\
 \text{lam} \circ \text{app} \leq \text{id}_D
 \]

- **Pattern-matching** For each constructor \(c \) of arity \(n \), two functions:

 \[
 c^* : D^n \rightarrow D \\
 c^* : D \rightarrow \text{opt}(D^n)
 \]

 such that

 \[
 c^* \circ c^* = (\vec{w} \mapsto \text{some}(\vec{w}))
 \]

- **Errors** For each pattern \(P \) of arity \(n \), a function:

 \[
 \text{error}_P : D \times (D^n \rightarrow D) \rightarrow D
 \]

 (no axioms)
Rho-models

A ρ-model is a Scott-domain D equipped with:

- **Beta-rule** Two (Scott-continuous) functions:

 \[
 \begin{align*}
 \text{lam} & : (D \to D) \to D \\
 \text{app} & : D \to (D \to D)
 \end{align*}
 \]

 s.t.

 \[
 \text{app} \circ \text{lam} = \text{id}_{D \to D}
 \]
 \[
 \text{lam} \circ \text{app} \leq \text{id}_D
 \]

- **Pattern-matching** For each constructor c of arity n, two functions:

 \[
 \begin{align*}
 c^* & : D^n \to D \\
 c^* & : D \to \text{opt}(D^n)
 \end{align*}
 \]

 s.t.

 \[
 c^* \circ c^* = (\vec{w} \mapsto \text{some}(\vec{w}))
 \]

- **Errors** For each pattern P of arity n, a function:

 \[
 \text{error}_P : D \times (D^n \to D) \to D
 \]

 (no axioms)

- **Structures** A function:

 \[
 \text{merge} : D \times D \to D
 \]

 s.t.

 \[
 \text{app}(\text{merge}(v_1, v_2), w) = \\
 \text{merge}(\text{app}(v_1, w), \text{app}(v_2, w))
 \]
Additional axioms

Extensions of the basic ρ-theory require extra axioms:

- Extensionality:

 \[(\eta\text{-rule}) \quad \text{lam} \circ \text{app} = \text{id}_D \]
Additional axioms

Extensions of the basic ρ-theory require extra axioms:

- **Extensionality:**

 η-rule: \(\text{lam} \circ \text{app} = \text{id}_D \)

- **ACI theory** (or any combination of the axioms A, C, I):

 - (Associativity) \(\text{merge}(\text{merge}(v_1, v_2), v_3) = \text{merge}(v_1, \text{merge}(v_2, v_3)) \)

 - (Commutativity) \(\text{merge}(v_1, v_2) = \text{merge}(v_2, v_1) \)

 - (Idempotence) \(\text{merge}(v, v) = v \)
Additional axioms

Extensions of the basic ρ-theory require extra axioms:

- **Extensionality:**

 \[
 \text{(}\eta\text{-rule)} \quad \text{lam} \circ \text{app} = \text{id}_D
 \]

- **ACI theory** (or any combination of the axioms A, C, I):

 \[
 \begin{align*}
 \text{(Associativity)} & \quad \text{merge(merge}(v_1, v_2), v_3) = \text{merge}(v_1, \text{merge}(v_2, v_3)) \\
 \text{(Commutativity)} & \quad \text{merge}(v_1, v_2) = \text{merge}(v_2, v_1) \\
 \text{(Idempotence)} & \quad \text{merge}(v, v) = v
 \end{align*}
 \]

- **Constructor discrimination**:

 for all $c \neq c'$

 \[
 c^* \circ c'^* = (_\mapsto \text{none})
 \]
Compiling pattern matching

Compositionality of pattern-matching

The interpretation of constructors (of arity n) provided by any ρ-model

$$c_* : D^n \to D, \quad c^* : D \to \text{opt}(D^n) \quad \text{s.t.} \quad c^* \circ c_* = (\vec{w} \mapsto \text{some}(\vec{w}))$$

is easily extended to all ML-style patterns P (of arity n):

$$P_* : D^n \to D, \quad P^* : D \to \text{opt}(D^n) \quad \text{s.t.} \quad P^* \circ P_* = (\vec{w} \mapsto \text{some}(\vec{w}))$$
Compiling pattern matching

Compositionality of pattern-matching

The interpretation of constructors (of arity n) provided by any ρ-model

$$c_* : D^n \rightarrow D, \quad c^* : D \rightarrow \text{opt}(D^n) \quad \text{s.t.} \quad c^* \circ c_* = (\overrightarrow{w} \mapsto \text{some}(\overrightarrow{w}))$$

is easily extended to all ML-style patterns P (of arity n):

$$P_* : D^n \rightarrow D, \quad P^* : D \rightarrow \text{opt}(D^n) \quad \text{s.t.} \quad P^* \circ P_* = (\overrightarrow{w} \mapsto \text{some}(\overrightarrow{w}))$$

The matching function $\text{match}_P : D \times (D^n \rightarrow D) \rightarrow D$ is defined by

$$\text{match}_P(v, f) = \text{case}_\text{opt} \; P^*(v) \text{ with }$$

$$| \text{some}(\overrightarrow{w}) \mapsto f(\overrightarrow{w}) \quad | \text{none} \mapsto \text{error}_P(v, f)$$

(where case_opt is the destruction operation of values of type $\text{opt}(D^n)$)
The interpretation function

Valuations A valuation is a function $\rho : V \to D$ ($V =$ set of all variables)
The set of all valuations D^V is a Scott-domain (i.e. infinite cartesian product).
The interpretation function

Valuations A valuation is a function $\rho : \mathcal{V} \rightarrow D$ (\mathcal{V} = set of all variables)
The set of all valuations $D^\mathcal{V}$ is a Scott-domain (i.e. infinite cartesian product).

Interpretation By induction on M we set:

$$\llbracket x \rrbracket_\rho = \rho(x)$$
$$\llbracket c \rrbracket_\rho = c_\ast$$
The interpretation function

Valuations A valuation is a function $\rho : \mathcal{V} \rightarrow D$ ($\mathcal{V} =$ set of all variables)

The set of all valuations $D^\mathcal{V}$ is a Scott-domain (i.e. infinite cartesian product).

Interpretation By induction on M we set:

$$[x]_\rho = \rho(x)$$
$$[c]_\rho = \text{lam}_n(\text{curry}_n(c_*))$$
The interpretation function

Valuations A valuation is a function $\rho : \mathcal{V} \to D$ ($\mathcal{V} =$ set of all variables).

The set of all valuations $D^\mathcal{V}$ is a Scott-domain (i.e. infinite cartesian product).

Interpretation By induction on M we set:

\[
\begin{align*}
[x]_\rho &= \rho(x) \\
[c]_\rho &= \text{lam}_n(\text{curry}_n(c_*)) \\
[[P\bar{x} \ll N]M]_\rho &= \text{match}_P([[N]_\rho, \bar{w} \mapsto [[M]_{(\rho;\bar{x} \mapsto \bar{w})}}]]
\end{align*}
\]
The interpretation function

Valuations A valuation is a function \(\rho : \mathcal{V} \rightarrow D \) (\(\mathcal{V} = \text{set of all variables} \))

The set of all valuations \(D^\mathcal{V} \) is a Scott-domain (i.e. infinite cartesian product).

Interpretation By induction on \(M \) we set:

\[
\begin{align*}
[x]_\rho &= \rho(x) \\
[c]_\rho &= \text{lam}_n(\text{curry}_n(c_*)) \\
[[P\bar{x} \ll N]M]_\rho &= \text{match}_P([N]_\rho, (\vec{w} \mapsto [M]_{(\rho;\bar{x} \leftarrow \vec{w})})) \\
[\lambda P\bar{x}. M]_\rho &= \text{lam}(v \mapsto \text{match}_P(v, (\vec{w} \mapsto [M]_{(\rho;\bar{x} \leftarrow \vec{w})})))
\end{align*}
\]
The interpretation function

Valuations A valuation is a function $\rho : V \to D$ ($V =$ set of all variables)

The set of all valuations D^V is a Scott-domain (i.e. infinite cartesian product).

Interpretation By induction on M we set:

\[
\begin{align*}
[x]_\rho &= \rho(x) \\
[c]_\rho &= \text{lam}_n(\text{curry}_n(c_*)) \\
[[P \tilde{x} \ll N] M]_\rho &= \text{match}_P([N]_\rho, (\tilde{w} \mapsto [M]_{(\rho; \tilde{x} \leftarrow \tilde{w})})) \\
[\lambda P \tilde{x} . M]_\rho &= \text{lam}(v \mapsto \text{match}_P(v, (\tilde{w} \mapsto [M]_{(\rho; \tilde{x} \leftarrow \tilde{w})}))) \\
[MN]_\rho &= \text{app} [M]_\rho [N]_\rho \\
[M; N]_\rho &= \text{merge}([M]_\rho, [N]_\rho)
\end{align*}
\]

The denotation $[[M]_\rho \in D$ continuously depends on the valuation $\rho \in D^V$.

The interpretation function

Valuations A valuation is a function $\rho : \mathcal{V} \rightarrow D$ ($\mathcal{V} =$ set of all variables)

The set of all valuations $D^\mathcal{V}$ is a Scott-domain (i.e. infinite cartesian product).

Interpretation By induction on M we set:

\[
\begin{align*}
[x]_\rho &= \rho(x) \\
[c]_\rho &= \text{lam}_n(\text{curry}_n(c_*)) \\
[[P \bar{x} \ll N]M]_\rho &= \text{match}_P([[N]_\rho, (\bar{w} \mapsto [[M]_\rho(\bar{x} \leftarrow \bar{w}))]) \\
[\lambda P \bar{x}. M]_\rho &= \text{lam}(v \mapsto \text{match}_P(v, (\bar{w} \mapsto [[M]_\rho(\bar{x} \leftarrow \bar{w}))})) \\
[MN]_\rho &= \text{app}([[M]_\rho] [N]_\rho) \\
[M; N]_\rho &= \text{merge}([[M]_\rho], [N]_\rho)
\end{align*}
\]

The denotation $[[M]_\rho \in D$ continuously depends on the valuation $\rho \in D^\mathcal{V}$.

Closed case If M is closed, we write $[[M]] = [[M]_\rho$ (does not depend on ρ)
The soundness property

Write: \[D \models M_1 = M_2 \iff \forall \rho \in D^\forall \ [M_1]_\rho = [M_2]_\rho \]
The soundness property

Write: \[D \models M_1 = M_2 \iff \forall \rho \in D^y \ [M_1]_\rho^D = [M_2]_\rho^D \]

Lemma (Soundness) — In all the \(\rho \)-models \(D \):

\[M_1 \rho = \delta \implies D \models M_1 = M_2 \]
The soundness property

Write: \[D \models M_1 = M_2 \equiv \forall \rho \in D^\gamma \ [M_1]_\rho^D = [M_2]_\rho^D \]

Lemma (Soundness) — In all the \(\rho \)-models \(D \):

\[M_1 = M_2_{\rho\sigma\delta} \Rightarrow D \models M_1 = M_2 \]

Lemma (Soundness w.r.t. ACI) — In all the \(\rho \)-models \(D \) where ‘merge’ is ACI:

\[M_1 = M_2_{\rho\sigma\delta_{\text{ACI}}} \Rightarrow D \models M_1 = M_2 \]
The soundness property

Write: \[D \models M_1 = M_2 \Leftrightarrow \forall \rho \in D^V \ [M_1]_\rho^D = [M_2]_\rho^D \]

Lemma (Soundness) — In all the \(\rho \)-models \(D \):

\[
M_1 =_{\rho\sigma\delta} M_2 \Rightarrow D \models M_1 = M_2
\]

Lemma (Soundness w.r.t. ACI) — In all the \(\rho \)-models \(D \) where ‘merge’ is ACI:

\[
M_1 =_{\rho\sigma\delta}^{\text{ACI}} M_2 \Rightarrow D \models M_1 = M_2
\]

Remarks:

– Soundness still holds for any combination of A, C, I and/or the \(\eta \)-reduction rule (provided we restrict to the corresponding notion of \(\rho \)-model).
The soundness property

Write:

\[D \models M_1 = M_2 \iff \forall \rho \in D^V \ [M_1]^D_{\rho} = [M_2]^D_{\rho} \]

Lemma (Soundness) — In all the \(\rho \)-models \(D \):

\[M_1 = M_2 \rho \sigma \delta \Rightarrow D \models M_1 = M_2 \]

Lemma (Soundness w.r.t. ACI) — In all the \(\rho \)-models \(D \) where ‘merge’ is ACI:

\[M_1 = M_2 \rho \sigma \delta _{\text{ACI}} \Rightarrow D \models M_1 = M_2 \]

Remarks:

– Soundness still holds for any combination of A, C, I and/or the \(\eta \)-reduction rule (provided we restrict to the corresponding notion of \(\rho \)-model).
– Proofs do not depend on any kind of Church-Rosser/confluence property.
A fundamental particular case: D^∞

Let D^∞ be the ‘historical’ non-trivial solution of: $D^\infty \simeq (D^\infty \to D^\infty)$

and set: $\text{merge}(v_1, v_2) := \sup\{v_1, v_2\}$ [Works since D^∞ has a top-element]

$error_P(v, f) := \bot$
A fundamental particular case: D^∞

Let D^∞ be the ‘historical’ non-trivial solution of: $D^\infty \approx (D^\infty \rightarrow D^\infty)$
and set: $\text{merge}(v_1, v_2) := \sup\{v_1, v_2\}$ [Works since D^∞ has a top-element]
error$_P(v, f) := \bot$

Lemma. — D^∞ is a ρ-model that satisfies the axioms A, C, I and η
A fundamental particular case: D^∞

Let D^∞ be the ‘historical’ non-trivial solution of: $D^\infty \approx (D^\infty \to D^\infty)$ and set: $\text{merge}(v_1, v_2) := \sup\{v_1, v_2\}$ [Works since D^∞ has a top-element]

$\text{error}_P(v, f) := \bot$

Lemma. — D^∞ is a ρ-model that satisfies the axioms A, C, I and η

Moreover, the following diagram commutes:

\[
\begin{array}{ccc}
\rho\text{-calculus} & \xrightarrow{[\cdot]} & D^\infty \\
\text{syntactic embedding} & \uparrow & \\
\lambda\text{-calculus} & \xleftarrow{\text{Scott’s } [\cdot]} & \\
\end{array}
\]
A fundamental particular case: \(D^\infty \)

Let \(D^\infty \) be the ‘historical’ non-trivial solution of: \(D^\infty \approx (D^\infty \to D^\infty) \)

and set:

\[
\text{merge}(v_1, v_2) := \sup\{v_1, v_2\} \quad \text{[Works since } D^\infty \text{ has a top-element]}
\]

\[
\text{error}_P(v, f) := \bot
\]

Lemma. — \(D^\infty \) is a \(\rho \)-model that satisfies the axioms \(A, C, I \) and \(\eta \)

Moreover, the following diagram commutes:

Since Scott’s interpretation is faithfull (i.e. injective) on \(\beta\eta \)-normal forms, we get:

Corollary (Conservativity on \(\lambda \)-normal forms / Weak C.R.) — \(\rho\sigma\delta\eta\text{ACI-theory of the } \rho \text{-calculus identifies no pair of distinct } \beta\eta \text{-normal terms of the } \lambda \text{-calculus.} \)
Discussion

- Compositionality of matching.
- Right distributivity rule.
- Notion of values.
- Weakness of the model
 - Management of errors.
 - Structures (cannot be destructed).
 ⇒ Monads.
Another perspective

- The construction $\lambda P_{\overline{x}} \cdot M_{\overline{x}}$ can be understood as $M \circ P^{-1}$

The (hidden) dream of ρ-calculists: allow the use of all terms as patterns...

⇒ Allow the inversion of arbitrary functions: $M^{-1} \equiv \lambda Mx \cdot x$
Another perspective

- The construction \(\lambda P \vec{x} \cdot M \vec{x} \) can be understood as \(M \circ P^{-1} \)

The (hidden) dream of \(\rho \)-calculists: allow the use of all terms as patterns...
⇒ Allow the inversion of arbitrary functions: \(M^{-1} \equiv \lambda M \vec{x} \cdot \vec{x} \)

- **Slogans:**

 1940’s The \(\lambda \)-calculus: ‘Legalize (arbitrary) application’
 2000’s The \(\rho \)-calculus: ‘Legalize (arbitrary) inversion’
Another perspective

- The construction $\lambda P \vec{x}. M \vec{x}$ can be understood as $M \circ P^{-1}$

The (hidden) dream of ρ-calculists: allow the use of all terms as patterns...

\Rightarrow Allow the inversion of arbitrary functions: $M^{-1} \equiv \lambda M \vec{x} . \vec{x}$

- **Slogans:**

 1940’s The λ-calculus: ‘Legalize (arbitrary) application’
 2000’s The ρ-calculus: ‘Legalize (arbitrary) inversion’

- But **inversion** is fundamentally **anti-monotonic!**
 [Think of $x \mapsto 1/x$, $f \mapsto f^{-1}$]

 \Rightarrow The full dream of ρ-calculists will not be realised with Scott-style semantics

 \Rightarrow But an exciting challenge for denotational semantics!